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Figure S-1: Photo of the resistance measurement setup. The materials library is secured on the x-y-
stage (1) (UHL GT8-NSNA) by a sucEon plate (2). The plate also accommodates a heaEng and nitrogen 
cooling system allowing temperature dependent measurements. However, this system was not used 
for the findings of this work. The stages are controlled by UHL F9S-3-M posiEoning controller (3). The 
resistance measurements are conducted using a Keithley 2400 source meter (4). The contact pins (5) 
(Feinmetall F238) are mounted to the stage by a custom spring-loaded circuit board (6). The setup is 
controlled via an Intel Core i7 8 GB RAM Windows 10 PC (7).  
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Figure S-2: VisualizaEon of each of the ten test libraries containing a photo of the library, composiEonal 
data, and the measured electrical resistance. 
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Figure S-3: Test of different iniEalizaEon area arrangements. One co- (b) and one mulElayer spu_ered 

materials library (c) were examined. For nine iniEalizaEon areas, a total of 𝑛 = #3499 ' ≈ 1.58 ∙ 10!" 

combinaEons are possible, that is why a random selecEon of arrangements is not feasible. The red one 
is used for all other tests of the algorithm, as it generally performed reliably across all libraries. Gener-
ally, the choice of iniEalizaEon areas ma_ers most for libraries showing a resistance distribuEon of high 
variance. Since the mulElayer spu_ered libraries cover more area on their respecEve composiEon 
space, the choice is in this case more important. The blue and purple areas show that for a narrow 
selecEon of iniEalizaEon areas, the algorithm is converging late or not at all. The arrangements shown 
in green and orange show that the edges of the libraries are most important to achieve a sufficient 
iniEal fit. The edges oaen feature the areas with the highest uncertainty of the Gaussian process, there-
fore the performance improves when adding these areas early on. In the arrangement shown in green, 
the area in the center of the library is neglected. The performance of (b) with this arrangement shows 
that the center point is generally not needed for the predicEon of uniform co-spu_ered libraries. How-
ever, the center region is important in case of the mulElayer spu_ered libraries. Since they were de-
signed to cover the complete ternary composiEon space with the composiEon space visible in form of 
a triangle in the center of the library, the center region is of great importance. In order to improve the 
predicEon for these libraries, 5 iniEalizaEon areas were placed in the center region, resulEng in the 
arrangement shown in red.  
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Figure S-4: Comparison of the GP performance on the dataset shown in Figure S-2 with and without 
including the measurement variance.   
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Figure S-5: Dataset with simulated outliers. As a single failed touchdown of the pins should be simu-
lated, ten out of 30 resistance measurements were exchanged by outliers chosen randomly between 
0.8 − 1.2	MΩ. The posiEon of the outliers was fixed to ensure comparability. Each plot shows the mean 
resistance at each measurement area.  
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Figure S-6: VisualizaEon of the resistance distribuEons with randomly added measurement noise. As 
soon as the vanilla GP encounters an outlier, the predicEon fails, while with incorporaEng the meas-
urement noise into the model, the GP is able to skip the outliers.  
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Figure S-7: Performance of the autonomous measurement with different Gaussian process kernels. 
Two kernels of the Matérn kernel class, the squared exponenEal as well as the raEonal quadraEc kernel 
are compared.  
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Figure S-8: VisualizaEon of the developed stopping criterion for all tested materials libraries. The accu-
racy of the opEmizaEon process, the mean covariance and well as the gradient of the mean covariance 
is shown over the iteraEons unEl all MAs are measured. The stopping iteraEon is marked in green, while 
the purple dashed lined shows the stopping iteraEon determined by observing the accuracy as well as 
a visual representaEon of the predicEon (the opEmal stopping opportunity). The purple range show 
the percentage of measured values compared to the enEre library. The different colors of the mean 
covariance plot signal the different phases of the stopping criterion. 
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